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Abstract. Age-related macular degeneration (AMD) is the leading cause
of blindness in the elderly. Current grading systems based on imaging
biomarkers only coarsely group disease stages into broad categories and
are unable to predict future disease progression. It is widely believed
that this is due to their focus on a single point in time, disregarding the
dynamic nature of the disease. In this work, we present the first method
to automatically discover biomarkers that capture temporal dynamics of
disease progression. Our method represents patient time series as tra-
jectories in a latent feature space built with contrastive learning. Then,
individual trajectories are partitioned into atomic sub-sequences that
encode transitions between disease states. These are clustered using a
newly introduced distance metric. In quantitative experiments we found
our method yields temporal biomarkers that are predictive of conversion
to late AMD. Furthermore, these clusters were highly interpretable to
ophthalmologists who confirmed that many of the clusters represent dy-
namics that have previously been linked to the progression of AMD, even
though they are currently not included in any clinical grading system.
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Fig. 1: Our method finds common patterns of disease progression in datasets
of longitudinal images. We partition time series into sub-trajectories before in-
troducing a clinically motivated distance function to clusters them in feature
space. Time-dependent clusters are then assessed by expert ophthalmologists on
their interpretability and ability to capture temporal dynamics related to the
progression of AMD.

1 Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness in
the elderly, affecting nearly 200 million people worldwide [24]. Patients with
early stages of the disease exhibit few symptoms until suddenly converting to
the late stage, at which point their central vision rapidly deteriorates [13]. Clin-
icians currently diagnose AMD, and stratify patients, using biomarkers derived
from optical coherence tomography (OCT), which provides high-resolution im-
ages of the retina. However, the widely adopted AMD grading system [7,14],
which coarsely groups patients into broad categories for early and intermediate
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AMD, only has limited prognostic value for late AMD. Clinicians suspect that
this is due to the grading system’s reliance on static biomarkers that are unable
to capture temporal dynamics which contain critical information for assessing
progression risk.
In their search for new biomarkers, clinicians have annotated known biomark-
ers in longitudinal datasets that monitor patients over time and mapped them
against disease progression [17,20,2]. This approach is resource-intensive and
requires biomarkers to be known a priori. Others have proposed deep-learning-
based methods to discover new biomarkers at scale by clustering OCT images
or detecting anomalous features [19,23,18]. However, these approaches neglect
temporal relationships between images and the obtained biomarkers are by def-
inition static and cannot capture the dynamic nature of the disease.

Our contribution: In this work, we present a method to automatically discover
biomarkers that capture temporal dynamics of disease progression in longitudi-
nal datasets (see Figure 1). At the core of our method is the novel strategy to
represent patient time series as trajectories in a latent feature space. Individual
progression trajectories are partitioned into atomic sub-sequences that encode
transitions between disease states. Finally, we cluster these sub-trajectories using
a newly introduced distance metric that encodes three distinct temporal crite-
ria. The resulting clusters are treated and evaluated as proposals for temporal
biomarkers, cataloguing population-level patterns of AMD progression.
Experimentally, we test our method on two large longitudinal retinal OCT
datasets totalling 160,558 images from 7,912 patients. Expert ophthalmologists
provide written interpretations by examining sets of longitudinal images from
each cluster, describing existing or potentially new time-dependent biomark-
ers. Finally, we benchmark our clusters against the widely adopted imaging
biomarker grading system, and find they often provide more accurate predic-
tions of functional vision acuity and time to conversion to late AMD.

2 Related work

Current AMD grading systems: Ophthalmologists’ current understanding of
progression from early to late AMD largely involves drusen, which are subretinal
lipid deposits. Drusen volume increases until suddenly stagnating and regressing,
which often precedes the onset of late AMD [17]. The established AMD grad-
ing system stratifies early and intermediate stages solely by the size of drusen
in a single OCT image [1,11,6,7]. Late AMD is classified into either choroidal
neovascularisation (CNV), identified by subretinal fluid, or geographic atrophy,
signalled by progressive loss of photoreceptors and retinal thinning. The degree
of atrophy can be staged using cRORA (complete retinal pigment epithelium
and outer retinal atrophy), which measures the width in µm of focal atrophy in
OCT [14]. Grading systems derived from these biomarkers offer limited diagnos-
tic value and little to no prognostic capability.
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Tracking evolution of known biomarkers: Few research efforts have aimed
at quantifying and tracking known AMD biomarkers, mostly drusen, over time
[20,17]. More work has explored the disease progression of Alzheimer’s disease
(AD), which offers a greater array of quantitative imaging biomarkers, such as
levels of tau protein and hippocampal volume. Young et al. [25] fit an event-based
model that rediscovers the order in which these biomarkers become anomalous
as AD progresses. Vogel et al. [21] find four distinct spatiotemporal trajectories
for tau pathology in the brain. However, this only works if biomarkers are known
a priori and requires manual annotation of entire time series.

Automated discovery of unknown biomarkers: Prior work for automated
biomarker discovery in AMD explores the latent feature space of encoders trained
for image reconstruction [23,19], segmentation [27] or generative adversarial net-
works [18]. However, these neural networks are prone to overfit to their specific
task and lose semantic information regarding the disease. Contrastive methods
[3,8,26] encode invariance to a set of image transformations, which are uncorre-
lated with disease features, resulting in a more expressive feature space.
However, all aforementioned methods group single images acquired at one point
in time, and in doing so neglect temporal dynamics. The one work that tackles
this challenge, and the most related to ours, categorises the time-dependent re-
sponse of cancer cells to different drugs, measured by the changing distance in
contrastive feature space from healthy controls [5].

3 Materials and methods

3.1 OCT image datasets

We develop our method on an in-house retinal OCT dataset called the Develop-
ment dataset, collected from the Southampton Eye Unit, and test it on a second
independent Unseen dataset from Moorfields Eye Hospital. In both, images were
acquired using Topcon 3D OCT devices (Topcon Corporation, Tokyo, Japan).
After strict quality control, the Development dataset consists of 46,496 scans
of 6,236 eyes from 3,456 patients. Eyes were scanned 7.7 times over 1.9 years
on average at irregular time intervals. The Unseen dataset is larger, containing
114,062 scans of 7,253 eyes from 3,819 patients. Eyes were scanned 16.6 times
over 3.5 years on average.
A subset of 1,031 longitudes was labelled using the established AMD grading
protocols derived from known imaging biomarkers. Early AMD was characterised
by small drusen between 63-125µm in diameter. We also recorded CNV, cRORA
(≥ 250µm and <1000µm), cRORA (≥ 1000µm) [14] and a healthy classification
for cases with no visible biomarkers. Additionally, visual acuity scores, which
measured the patient’s functional quality of vision using a LogMAR chart, are
available at 83,964 time points.
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3.2 Self-supervised feature space using contrastive learning

We adapt BYOL [9] for contrastive training of a ResNet50 (4x) model. As several
of the contrastive transformations designed for natural images are inapplicable
to medical images, such as solarisation, colour shift and greyscale, we use the set
tailored for retinal OCT images by Holland et al. [10]. Models were trained on
the entire dataset for 120,000 steps using the Adam optimiser with a momentum
of 0.9 and a learning rate of 5 · 10−4. After training, we first remove the final
linear layer before projecting all labelled images to the feature space of 2048
dimensions.

3.3 Extracting sub-trajectories via partitioning

Naively clustering whole time series of patients ignores two characteristics of
longitudinal data. Firstly, individual time series are not directly comparable as
patients enter and leave the study at different stages of their overall progression.
Secondly, longer time series can record multiple successive transitions in disease
stage. Inspired by TRACLUS [12], the state of the art in trajectory clustering,
we adapt their partition-and-group framework by assuming that trajectories can
be partitioned into a common set of sub-trajectories that capture singular tran-
sitions between progressive states of the disease.
For each eye, we first form piecewise-linear trajectories by linking points in fea-
ture space that were derived from consecutively acquired OCT images. We then
extract sub-trajectories by finding all sequences of images spanning 1.0 ± 0.5
years of elapsed time within each trajectory. Next, to avoid oversampling trajec-
tories with a shorter time interval between images, we randomly sample at most
one sub-trajectory in every 0.5-year time interval.

Fig. 2: Illustration of sub-trajectory distance functions which each encode tem-
poral criteria for similarity (see Equation 2). We illustrate clusters assignments,
denoted by colour, resulting from three combinations of φ and λ.
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3.4 Sub-trajectory distance functions and clustering

In order to find common patterns of disease progression among sub-trajectories
we cluster them. To this end we introduce a new distance function between
sub-trajectories that incorporates three distinct temporal criteria (see Figure 2).
The first, formulated in Equation 1, matches two sub-trajectories, U and V , of
patients who progress between the same start and end states:

Dtransition(U, V ) = ‖Ustart − Vstart‖2 + ‖Uend − Vend‖2 . (1)

Since all sub-trajectories cover a similar temporal duration, Dtransition also dif-
ferentiates between fast and slow progressors and stable periods of no progres-
sion. However, by ignoring intermediary images, this metric does not respect the
disease pathway along which patients progress. To incorporate this, we include
a second metric that measures path dissimilarity, calculated using dynamic time
warping (DTW) [15,16,4]. DTW finds the optimal temporal alignment between
two time series before computing their distance. This re-alignment allows us to
match sub-trajectories that traverse the same disease states in the same order,
irrespective of the rate of change between states. We combine Dtransition with
DTW using a λ coefficient so that the overall distance between U and V is

Dpath(U, V ) = λ Dtransition(U, V ) + (1− λ) DTW(U, V ) . (2)

The third and final temporal criteria is to match time series that progress in
the same relative direction, regardless of absolute disease states. We weight the
contribution of this with φ in Equation 3:

Dsubtraj(U, V ) = φ Dpath(U − Ustart, V − Vstart) + (1− φ) Dpath(U, V ) . (3)

Spectral clustering As the non-linearity of Dsubtraj prohibits the use of k-
means for clustering, we instead use spectral clustering [22] to group similar
sub-trajectories. Hereby, we construct an affinity matrix A encoding the negative
of the distance Dsubtraj between all pairs of sub-trajectories. Using A, we group
sub-trajectories into K clusters.

3.5 Qualitative and quantitative evaluation of clusters

Initially, we tune the hyperparameters, λ, φ and K, on the Development dataset
by heuristically selecting values that result in higher uniformity between sub-
trajectories within each cluster. Expert ophthalmologists then review the clus-
ters, interpreting and summarising any consistently observed temporal dynamics.
Next, we apply the method to the Unseen dataset, using the same hyperparam-
eters. Ophthalmologists then review these clusters and confirm whether they
capture the same temporal biomarkers observed in the Development dataset.
In addition to the qualitative evaluation, we also validate the utility of our
clusters as biomarkers that stratify risk of disease progression. We test this by
predicting the time until conversion to late AMD and its subtypes, CNV and
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Fig. 3: We show four clusters from the Development dataset (left half) and the
equivalent clusters in the Unseen dataset (right half). Ophthalmologists identi-
fied clusters capturing the same progression dynamics in both datasets, provid-
ing clinical interpretations (underlined). Clusters show two representative sub-
trajectories originating from different patients, each containing five longitudinal
images with the time and location of greatest progression marked by arrows.
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cRORA. Additionally, we predict current visual acuity. To use our cluster assign-
ments for these tasks, we define a probability distribution over the K clusters
and fit a linear regression model. Similarly, we fit an equivalent linear regression
model to the static biomarkers from the established grading system detailed in
section 3.1. We also include a demographic baseline that combines the patient’s
age, with which onset of AMD is highly correlated, and sex. In each case we
reserve a random subset of 80% of the sub-trajectories for the train set and the
remaining 20% for the test set, while ensuring a patient-wise split. We repeat
this using 10-fold cross-validation to find the overall performance. Finally, we
repeat the entire process, starting from sub-trajectory extraction, followed by
clustering and then regression experiments, using 7 random seeds and report
the means and standard deviations. Additional information on this pipeline is
provided in the supplementary material.

4 Experiments and results

4.1 Sub-trajectory clusters are candidate temporal biomarkers

By first applying our method to the Development dataset we found that using
λ = 0.75, φ = 0.75 and K = 30, resulted in the most uniform and homogeneous
clusters while still limiting the total number of clusters to a reasonable amount.
Achieving the same cluster quality with smaller values of φ required many more
clusters in order to encode all combinations of possible start and end disease
states. The expert ophthalmologists remarked that many of the identified clusters
capture dynamics that have previously been linked to the progression of AMD,
even though they are currently not included in any clinical grading system. Using
the same hyperparameters our method generalised to the Unseen dataset which
yielded clusters with equivalent dynamics and quality (see Figure 4).
In both datasets our method differentiated between time series showing growth of
pigment epithelial detachments (PEDs) and their eventual regression (resulting
in atrophy and conversion to late dry AMD). It also separated development of
intraretinal from subretinal fluid, or CNV (conversion to late wet AMD). To see
more cluster interpretations we refer to the supplementary material.

4.2 Newly found biomarkers predict conversion to late AMD

Next, we validated that our clusters are predictive of progression to late AMD.
Our clusters were comparable to, and in some cases outperformed, the current
widely adopted grading system in predicting risk of conversion (see Table 1).
In all tasks the standard biomarkers are only marginally more indicative of risk
than the patient’s age and sex. This experiment confirms that our clusters are
related to disease progression.
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Table 1: Temporal clusters were comparable to the established clinical grading
systems for AMD in predicting risk of future disease, shown by reduced MAE in
years.

Development dataset
Time to

Late AMD ↓
Time to
CNV ↓

Time to
cRORA ↓

Current
visual acuity ↓

Demographic 0.756±0.010 0.822±0.012 0.703±0.028 0.381±0.007
Current grading system 0.757±0.010 0.819±0.012 0.685±0.035 0.367±0.008

Temporal clusters 0.746±0.011 0.772±0.013 0.619±0.031 0.350±0.009

Unseen dataset
Demographic 1.343±0.027 1.241±0.017 1.216±0.062 0.188±0.007

Current grading system 1.308±0.018 1.244±0.022 1.286±0.053 0.177±0.008
Temporal clusters 1.322±0.029 1.235±0.027 1.257±0.056 0.188±0.006

5 Discussion and conclusion

Motivated to improve inadequate grading systems for AMD that do not in-
corporate temporal dynamics we proposed a method to automatically discover
biomarkers that are time-dependent, interpretable, and predictive of conversion
to late-stage AMD. We applied our method to two large longitudinal datasets,
cataloguing 3,218 total years of disease progression. The found time-dependent
clusters were subsequently interpreted by expert ophthalmologists. They found
them to capture distinct patterns of disease progression that have been previ-
ously linked to AMD, but are not currently included in clinical grading systems.
Furthermore, we experimentally demonstrated that the found clusters predict
conversion to late-stage AMD on par with the established grading system.
Both the strong qualitative and quantitative results were obtained using an un-
seen testing dataset. This motivates the application of our method to other
longitudinal datasets in ophthalmology and beyond. While many clusters iden-
tified variants of early AMD, some captured periods after conversion to late
AMD. This is due to the over-representation of patients with late disease in our
datasets. Moreover, by using 2D OCT images we potentially disregard relevant
information contained in the full volumetric scans.
In the future, biomarkers identified by our method can be further refined by
clinicians. We envision that they may inform the next generation of grading sys-
tems for AMD that incorporate the temporal dimension intrinsic to this dynamic
disease.
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Supplementary material

Fig. 4: We show five more clusters from the Development dataset and Unseen
dataset. These clusters were found to capture reduction in subretinal fluid (po-
tentially due to treatment), progression of atrophy evidenced by hypertransmis-
sion (increased signal under the retina) and a stable disease state with no signs
of disease progression. Furthermore, we find two clusters of image artefacts, such
as large change in image brightness and quality, and change in anatomical re-
gion captured in the image. These clusters were easily identified as artefacts by
clinicians and removed from consideration as temporal biomarkers.
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Fig. 5: Ablation over φ, λ, K and σ parameters (rows) on AMD risk prediction
tasks (columns) on the Development dataset using seven random seeds. σ controls
the degree of locality used for risk stratification. For each sub-trajectory we
leverage A to find the average affinity with the members of each cluster. To these
K averages we apply a Gaussian kernel, with standard deviation σ, resulting inK
membership probabilities used by the linear risk prediction model. After selecting
σ for each task on the Development dataset we test the same configuration of
parameters by applying them to the Unseen dataset.
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