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Abstract

Deep learning has potential to automate screening, monitoring and grading of disease in medical
images. Pretraining with contrastive learning enables models to extract robust and generalisable
features from natural image datasets, facilitating label-efficient downstream image analysis. How-
ever, the direct application of conventional contrastive methods to medical datasets introduces
two domain-specific issues. Firstly, several image transformations which have been shown to be
crucial for effective contrastive learning do not translate from the natural image to the medical
image domain. Secondly, the assumption made by conventional methods, that any two images
are dissimilar, is systematically misleading in medical datasets depicting the same anatomy and
disease. This is exacerbated in longitudinal image datasets that repeatedly image the same pa-
tient cohort to monitor their disease progression over time. In this paper we tackle these issues
by extending conventional contrastive frameworks with a novel metadata-enhanced strategy. Our
approach employs widely available patient metadata to approximate the true set of inter-image
contrastive relationships. To this end we employ records for patient identity, eye position (i.e.
left or right) and time series information. In experiments using two large longitudinal datasets
containing 170,427 retinal optical coherence tomography (OCT) images of 7,912 patients with age-
related macular degeneration (AMD), we evaluate the utility of using metadata to incorporate
the temporal dynamics of disease progression into pretraining. Our metadata-enhanced approach
outperforms both standard contrastive methods and a retinal image foundation model in five out
of six image-level downstream tasks related to AMD. We find benefits in both a low-data and high-
data regime across tasks ranging from AMD stage and type classification to prediction of visual
acuity. Due to its modularity, our method can be quickly and cost-effectively tested to establish
the potential benefits of including available metadata in contrastive pretraining.
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1. Introduction

Deep learning promises to revolutionise medical imaging by automating screening, diagnosis
and monitoring of diseases (Davenport and Kalakota, 2019). Traditionally, the successful appli-
cation of supervised deep learning has required large amounts of labelled data for training. This
does not translate well to the medical domain where labelled images are scarce as their annotation
typically requires the time and cost of a trained clinician. ImageNet, commonly used to train and
benchmark algorithms for natural image processing, contains millions of labelled images (Deng
et al., 2009), while the median size of datasets featured in the Medical Image Computing & Com-
puter Assisted Intervention (MICCAI) conference in 2019 ranged from 120 to 180 subjects (Kiryati
and Landau, 2021). There is a large disparity between the growing amount of medical data and
the resources needed to annotate it for the research and development of deep learning tools in
medicine (Willemink et al., 2020).
Pretraining with contrastive frameworks enables deep learning models to reach the same level of
performance using fewer labelled training samples (Chen et al., 2020b). They work by contrasting
two augmented views of each image per batch, assuming their similarity depends on whether or
not they originate from the same image. However, they are prone to provide misleading learning
signals when the true set of inter-image relationships are unknown. As illustrated in (Khosla et al.,
2020), removing negative pairs of images from the same ImageNet class improves downstream
performance. In contrast, large volumes of medical images are not typically annotated with gold-
standard class labels for disease stage or type, but are commonly accompanied by metadata such
as the date of the medical scan and the patient’s anonymised identity. This widely available in-
formation has the potential to indicate the true set of inter-image relationships used in contrastive
frameworks in the medical domain.
Optical coherence tomography (OCT) enables low-cost, non-invasive imaging of the eye. This has
led to the accumulation of large, metadata-enriched retinal datasets that approach the size of those
for natural images. Hence, ophthalmology is ideally suited for adapting advances in self-supervised
learning to the medical domain. A particularly challenging task is the diagnosis and prognosis of
age-related macular degeneration (AMD) in retinal OCT. AMD, the leading cause of irreversible
blindness in the elderly, is a progressive disease and is that is projected to increase in prevalence by
nearly 50% from 196 million cases worldwide in 2020 to 288 million by 2040 (Wong et al., 2014).
In this paper we extend contrastive pretraining with strategies leveraging time series of widely
available metadata in longitudinal retinal imaging datasets (see Figure 1). We conduct our analy-
sis across seven diverse downstream tasks related to AMD in two large datasets totalling 170,427
OCT images of 7,912 patients collected in the scope of the PINNACLE study (Sutton et al., 2022).
Overall, our contributions and key findings include:

• We adapt the set of transformations and pretraining protocols for two standard contrastive
pretraining methods in datasets of retinal OCT images.

• We then introduce metadata-enhanced learning, leveraging widely available patient metadata
to address known issues with standard contrastive methods. To this end, our approach
flexibly encodes known temporal dynamics of disease progression into pretraining using widely
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available metadata. Specifically, we use the scan date, anonymous patient identifier and eye
laterality to create more informative contrastive positive pairs that correct misleading false
negative pairs that arise systematically in standard contrastive frameworks.

• We found that models pretrained with standard contrastive methods consistently outper-
formed models pretrained on ImageNet and RadImageNet, and matched a retinal foundation
model trained on as many as 15x retinal OCT images. Moreover, models pretrained with
metadata-enhanced learning, redefining contrastive relationships between longitudinal im-
ages acquired within 1 year intervals, consistently outperformed both standard contrastive
methods and the retinal foundation model. Notably, to classify Healthy vs. Early AMD and
Late vs. Early AMD metadata-enhanced extensions required 20x and 100x fewer labelled
data, respectively, to recover the performance of the foundation model.

2. Related Work

2.1. Self-supervised learning

Self-supervised pretraining has gained momentum in recent years as a method for creating
generalisable representations of unlabelled data. Pretrained models can then be finetuned on
supervised tasks resulting in faster training and requiring fewer annotations to reach good per-
formance. It works by solving so-called pretext tasks that create learning signals without human
supervision. Initially pretext tasks were derived from ad-hoc heuristics such as predicting image
rotation (Komodakis and Gidaris, 2018) and colourisation (Zhang et al., 2016) but these were sur-
passed by more general context matching tasks such as solving jigsaw puzzles (Noroozi and Favaro,
2016) and predicting one local context from another (Oord et al., 2018).
Contrastive frameworks (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Chen and He, 2021)
currently advance the state-of-the-art in self-supervised learning. In their seminal work, Chen
et al. 2020a proposed SimCLR which creates a context matching task by combining a set of image
transformations with a contrastive loss. They define similarity at the image level, such that two
augmented views of the same image create a positive contrastive pair and views from different
images make negative pairs. Models then learn to maximise similarity in representation space
between positive pairs, and minimise similarity between negative pairs. They find that a diverse
set of transformations, including random crops, rotations and colour shifts, helps in building more
generalisable representations than could be learned from any one pretext task.
Khosla et al. 2020 show that standard contrastive learning on ImageNet is degraded by misleading
negative pairs consisting of images belonging to the same class, and restore performance by instead
making these pairs positive. In Bootstrap Your Own Latent (BYOL) Grill et al. 2020 remove nega-
tive pairs altogether and employ imbalanced student and teacher networks to prevent a degenerate
solution. Overall, choosing an appropriate and diverse set of transformations as well as the correct
handling of false negative pairs are crucial for the successful application of contrastive learning.

2.2. Self-supervised learning in the medical domain

Early applications of self-supervised learning to medical images also relied on ad-hoc pretext
tasks such as image registration (Li and Fan, 2017) or region-specific tasks such as locating anatom-
ical landmarks in the heart (Bai et al., 2019), distance between random patches in the brain (Spitzer
et al., 2018) and estimating retinal thickness in the eye (Holmberg et al., 2020). Chen et al. 2019
use a generic context restoration task to improve plane detection in ultrasound, landmark detection
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Figure 1: In this paper we pretrain models with existing contrastive frameworks (BYOL and SimCLR) and our
metadata-enhanced contrastive versions on large datasets of unlabelled OCT images. Our method addresses existing
weaknesses of standard frameworks by leveraging metadata widely available in the clinical workflow. To this end we
employ information of patient identity, eye position (i.e. left or right) and time series information to indicate the set
of true inter-image contrastive relationships. We benchmark pretraining strategies by quantifying improvements on
seven downstream tasks related to the clinical assessment of AMD.

in CT and tumour segmentation in MRI.
There are very few applications of standard contrastive learning to medical datasets (Ghesu et al.,
2022). Many transformations used to generate views of natural images are not compatible with
medical images. In contrast to colour images medical scans are often single-channel rendering
two of the most performant augmentations in SimCLR, colour shift and greyscale, inapplicable.
Additionally, medical scans often have a strong prior on their content. For example, studies typi-
cally collect scans targeting a single anatomical region or medical condition. Views generated from
different images that feature similar disease-related or anatomical content will nonetheless form
misleading negative pairs and degrade the learning signal.
To address these problems others have used domain specific information. Chen et al. 2021 argue
that views generated from any two frames of the same ultrasound video are highly correlated. By
switching their contrastive relationship from negative to positive they show improvement in detec-
tion of COVID-19 and pneumonia. Others generate more informative positive pairs by choosing
bilateral views to improve classification of conditions in dermatological photographs (Azizi et al.,
2021), multi-modal views between genetic information and fundus images for classifying cardiac
disease (Taleb et al., 2022), views from the same temporal longitude for improving lung segmen-
tation (Zeng et al., 2021a) and views with the same disease label for classifying pleural effusion in
chest X-ray (Vu et al., 2021). Two studies create positive pairs from spatially proximal 2D slices
to improve volumetric segmentation of cardiac MRI (Zeng et al., 2021b; Chaitanya et al., 2020).
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Ciga et al. 2022 limit negative pairs to histopathological images with different staining and tissue
types for improved detection of cancer.

2.3. Deep learning for retinal imaging and AMD

Most existing applications of deep learning to retinal images are fully supervised (Bogunović
et al., 2017; Lee et al., 2017; Schmidt-Erfurth et al., 2018; De Fauw et al., 2018). There have
been very few applications of self-supervised learning to retinal images. Holmberg et al. 2020 use
a multi-modal approach to improve detection of retinopathy by pretraining models to use fundus
photographs to predict retinal thickness maps derived from OCT. Srinivasan et al. 2021 find that
contrastive pretraining on ImageNet boosted downstream analysis of diabetic retinopathy in small
fundus imaging datasets.
Self-supervised pretraining for AMD has so far included one work using fundus photographs (Yel-
lapragada et al., 2022) and another employing a temporal ordering task to learn late AMD features
from longitudes in OCT (Rivail et al., 2019). More recently (Zhou et al., 2023) released RETFound,
a foundation model for retinal images trained on over 700,000 OCT images. However, there are
no studies comprehensively testing the potential role of metadata for improving self-supervised
learning in the domain of retinal OCT.

3. Materials and Methods

Our proposed method is summarised in Figure 1. In this section we describe the two longitudinal
retinal OCT datasets in section 3.1. We then revisit standard contrastive learning and introduce
our proposed metadata-enhanced framework in section 3.2. Finally, we specify experiments to
evaluate our pretrained models and the benefit of our metadata-enhanced modifications in section
3.3.

3.1. OCT datasets

In this paper we use two datasets collected as part of the PINNACLE project (Sutton et al.,
2022). They each contain longitudinal data consisting of retinal OCT scans of patients with AMD.
For both datasets images were acquired using Topcon 3D OCT devices (Topcon Corporation,
Tokyo, Japan). The first dataset, collected at the Southampton Eye Unit, consists of 48,825 OCT
scans and followed 6,368 eyes from 3,498 patients. A subset of 2,037 images are healthy control
scans curated from 570 patients. In Figure 3a we show the number of times eyes were scanned.
The average eye was scanned 7.7 times over an average duration of 1.9 years, with longitudes
featuring AMD spanning 2.3 years. The second dataset, collected at Moorfields Eye Hospital, is
larger containing 121,602 OCT scans of 7,336 eyes from 3,844 patients. The longitudinal dimension
is also greater, with longitudes containing on average 16.6 scans spanning 3.5 years. We extracted
the mediolateral 2D slice centred at the fovea and resampled to 208×256 pixels with a pixel size of
7.0×23.4 µm2, half the median resolution. We elect to maintain these as separate datasets to test
whether any benefits from our pretraining methods generalise to different hospitals and collection
sites.
Each image is accompanied by metadata detailing which eye (i.e. left or right eye) is depicted,
the patient’s anonymised identity and the exact date and time of scanning. This metadata was
reserved for metadata-enhanced pretraining while other demographic information recording the
patient’s age and sex are instead used for downstream evaluation.

5



Figure 2: Our method enhances standard contrastive pretraining with widely available medical metadata to correct
many of the misleading negative pairs that arise systematically in standard frameworks. Moreover, by introducing
inter-image positive pairs we combine artificial image transformations with natural ones that already exist between
images acquired closely in time (controlled by a δT parameter). Our method also removes contrastive pairs with
unknown relationships and retains negative pairs containing images originating from different patients.

(a) Distribution of longitude lengths (b) Distribution of time intervals between scans of the
same longitude

Figure 3: The distribution of longitude lengths (left) in the Southampton and Moorfields datasets and the frequency
distribution of time intervals δT in years between all pairs of longitudinal scans from the same eye (right), with the
width of each bin covering a duration of one month.
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AMD stage labels, indicating whether a patient has early or late stage AMD, were extracted
automatically from the electronic health records. For 39% of scans it was possible to extract an
AMD stage label in this manner, and the remaining 61% were left unlabelled. Late stage AMD
was further characterised into either wet (choroidal neovascularization) or dry (geographic atrophy)
AMD. Clinical information also included visual acuity, a metric for assessing functional quality of
vision, which measured the logarithm of the minimum angle of resolution (LogMAR) perceptible to
the patient. We rescale this measurement via a linear mapping to find the Letter Score. This is a
more intuitive metric which indicates how many letters, from 0 to 95, could be read by the patient
on a letter chart (Beck et al., 2003). Finally, we obtained segmentations of eleven retinal layers
using the Iowa Reference Algorithms (Retinal Image Analysis Lab, Iowa Institute for Biomedical
Imaging, USA), a graph-cut-based segmentation algorithm (Li et al., 2005; Garvin et al., 2009;
Abràmoff et al., 2010).

3.2. Metadata-enhanced contrastive learning

In this study, we first extend SimCLR (Chen et al., 2020a) as it is the most widely adopted and
paradigmatic contrastive method (Chaitanya et al., 2020; Azizi et al., 2021; Ciga et al., 2022; Taleb
et al., 2022). For a second standard baseline we include BYOL (Grill et al., 2020) for its exclusive
use of positive pairs. As alluded to in section 2.2 standard contrastive learning suffers from two
issues in medical applications. The first is that several transformations used by SimCLR and
BYOL, such as hue, saturation and colour dropping, are not applicable in single-channel medical
scans. The second is that many negative contrastive pairs will in fact feature highly similar views
since all OCT images depict the same anatomy and limited set of pathologies, especially if both
images originate from the same eye or patient.
To address these issues we redefine contrastive inter-image relationships as depicted in Figure 2. To
this end we leverage the longitudinal medical metadata described in section 3.1. Let L longitudinal
scans of an eye with position l (i.e. left or right eye) from patient u be uel = {(uxli, utli)}Li=1 where
xi and ti denote the scan image data and acquisition timestamp, respectively. We define two scans
as being in temporal proximity if the time between their acquisition dates falls between δmin

T and
δT . Finally, we define a function S for the contrastive relationship between any two scans as:

Sδmin
T , δT

(uxli,
vxmj ) =


+++ (u = v) ∧ (l = m) ∧ (δmin

T ≤ |tui − tvj | ≤ δT )

−−− u ̸= v

??? otherwise

(1)

This equation encodes three assumptions. Firstly, we assume that longitudinal images of the
same eye acquired within a set time window δT differ minimally in their progression of AMD
and healthy ageing (see Figure 2). These cases are labelled as positive pairs for the purpose of
contrastive learning. To observe evidence of this assumption refer to Figure A.9. The second
assumption states that pairs of images from different individuals are likely to be dissimilar and we
label these pairs as negative accordingly. Furthermore, scans outside the δT window may be similar
in cases of slow AMD progression but semantically different in cases of fast disease progression.
Consequently, we remove these as contrastive pairs altogether. Similarly, disease progression is
known to be correlated in fellow eyes with a temporal delay. Therefore, we also remove pairs of
images from fellow eyes due to their unknown relationship. The third assumption states that pairs
of images from different individuals are more likely to be dissimilar with respect to disease state,
and we label these pairs as negative accordingly.
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PyTorch Code 1: Metadata-enhanced wrapper for standard contrastive losses. This function
uses the patient identifier, eye side, and scan date of each image to construct more informative
positive and negative pairs for standard contrastive methods. This customizable approach allows
for flexible encoding of in-domain knowledge into pretraining. In this paper, we choose to define
positive pairs as images of the same eye acquired within a short temporal interval defined by δT .
We also use metadata to exclude negative pairs of images originating from either eye of the same
patient.

def standard_contrastive_loss(positive_pairs , negative_pairs):

# Any contrastive loss such as SimCLR , BYOL , MoCo , DINO ...

...

def metadata_enhanced_contrastive_loss(embeddings , metadata , d_T_min , d_T):

patient_ids , eye_sides , scan_dates = metadata

# Use metadata to identify positive and negative pairs

# (excluding unknown pairs by default)

time_intervals = (scan_dates - scan_dates.T).abs()

temporal_mask = (d_T_min < time_intervals) & (time_intervals <= d_T_max)

same_patient_mask = (patient_ids == patient_ids.T)

same_eye_mask = same_patient_mask & (eye_sides == eye_sides.T)

positive_pairs = embeddings[torch.where(same_eye_mask & temporal_mask)]

negative_pairs = embeddings[torch.where (~ same_patient_mask)]

# Calculate contrastive loss as normal on redefined pairs

loss = standard_contrastive_loss(positive_pairs , negative_pairs)

return loss

Using Equation 1 to redefine inter-image relationships, we introduce metadata-enhanced (ME)
variants of BYOL and SimCLR as BYOL-ME(δT ) and SimCLR-ME(δT ), respectively. To cre-
ate augmented views we retain the set of transformations used in standard contrastive learning.
However, instead of creating two views from each image we now generate positive pairs from two
related images by augmenting each once. When creating batches we ensure that every image is
part of at least one positive pair. While we chose SimCLR and BYOL in this paper as two of
the most widely adopted and researched contrastive frameworks, our positive and negative pair
reformulation is applicable to any contrastive framework and can be calibrated for any progressive
disease.

Our metadata-enhanced framework can be implemented by a simple extension to existing con-
trastive losses (see PyTorch Code 1). By redefining positive and negative pairs using a customisable
set of rules, existing pipelines can be modified at minimal cost.
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3.3. Experimental protocol

3.3.1. Contrastive pretraining protocol

Both standard and metadata-enhanced contrastive pretraining variants, for both SimCLR,
BYOL, use a ResNet50 (4x) backbone with half precision, and were randomly initialised before
training according to the He protocol (He et al., 2016). In both datasets we allocate 4,800 samples
for validation, 4,800 for testing and the remainder for pretraining. Models then train with the
AdamW optimiser using a learning rate of 5 · 10−4 and momentum of 0.9 for a fixed number of
120,000 optimisation steps. We use linear warmup for the first 1,200 steps and decay the learning
rate with the cosine schedule without restarts. The batch size is 384 and we use the model after
the final training step for downstream evaluation. Additional details are listed in Appendix A.2.
Due to the sensitivity of contrastive frameworks to the chosen transformations we closely follow
those used by BYOL (Grill et al., 2020), transferring as many as are applicable to retinal OCT.
We first, with probability 0.8, augment each scan by varying image brightness and contrast using
maximum relative changes of 0.4. Then we rotate by a random angle up to 8 degrees, crop centrally
to resolution 188×236 to remove rotation border artefacts, flip horizontally with probability 0.5,
randomly crop to a scale between 0.25 and 1.0 with aspect ratio between 3/4 and 4/3, and finish
by resizing to 192×192. We chose not to use Gaussian blur as we, in accordance with (Azizi
et al., 2021), found it obfuscated local textural features in the retinal images. We also omit hue,
saturation and colour dropping as these augmentations do not have any effect on greyscale images.
In our experiments we first pretrain multiple ResNet50 models using both standard SimCLR and
BYOL in addition to their metadata-enhanced extensions defined in section 3.2. For both SimCLR-
ME and BYOL-ME we test three values of δT : 0.5 years, 1.0 years and no time limit (i.e. all
available longitudinal scans). These values result in including 18.8%, 35.1% and 100% of the
potentially positive pairs respectively, or 469,334, 874,029 and 2,493,568 in total as can be seen in
Figure 3b. We set δmin

T to 0.02 years to exclude poor quality pairs that are likely due to a scan
retake.

3.3.2. Pretrained baselines

To fairly assess the benefit of metadata-enhanced learning we compare against three pretrained
baselines. The first baseline is a model pretrained by (Chen et al., 2020a) in SimCLR on natural
images in ImageNet. Our second baseline uses a more medically aligned model pretrained to
classify 165 different conditions on RadImageNet (Mei et al., 2022). We also compare our methods
against RETFound, a foundation model for retinal images trained on over 700,000 OCT images
(Zhou et al., 2023). RETFound was trained as a Masked Autoencoder (He et al., 2022) and uses
a ViT-Large backbone. We use the version specifically trained on OCT data, which was found
to be highly performant in retinal disease prediction, including AMD, in external datasets. These
baselines, pretrained on natural images, medical images and external retinal OCT images, offer
increasing levels of in-domain pretraining against which to compare in-dataset contrastive learning,
and our metadata-enhanced extensions.

3.3.3. Finetuning protocol

To compare different pretrained models we adopt the standard linear evaluation finetuning
protocol used by (Chen et al., 2020a). We first freeze the pretrained encoder and replace any dense
projection layers used in pretraining with a single linear layer that projects from the latent space to
the dimension of the supervised label. More specifically, for the segmentation task this involves a
11x192 dimension matrix and for all other problems the output is size 1. For classification problems
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we then apply a sigmoid activation function and for segmentation and regression problems we use
tanh activation and scale labels to the range [-1,1]. We use a batch size of 1024 and ensure we
use the same train, validation and test splits as for pretraining. We then train all models for 3000
epochs using the early stopping if downstream validation performance does not improve for 600
steps. To fit the model we use an AdamW optimiser with momentum of 0.9, weight decay of
1 · 10−2 and a learning rate of 5 · 10−4 using the cosine annealing schedule after 50 linear warmup
epochs. These hyperparameters are the same as were used to evaluate RETFound in (He et al.,
2022). Moreover, for all models pretrained on external dataset we also resize the input image to
the size they were trained on, which was 224x224. In training we employ a weaker form of the
augmentations described in the pretraining protocol. Finally, we report performance on the test
set of the model checkpoint with the best validation downstream performance.

3.3.4. Downstream tasks

To evaluate pretrained models, including pretrained baselines and models pretrained with stan-
dard and metadata-enhanced contrastive learning, we test them on the following seven downstream
tasks:

1. AMD stage and type classification tasks to test the ability of pretrained models to learn
disease progression and disease type. The following tasks are tested:

(a) Early/Intermediate AMD vs. Healthy eye classification.
(b) Late vs. Early/Intermediate AMD classification.
(c) Late stage Dry vs. Wet AMD classification.

2. Prediction of functional vision assessment score, which involves learning any clinical
features visible in the retina that may degrade the patient’s quality of vision.

3. Prediction of patient demographic information, including patient sex classification and
age regression to incorporate learning healthy ageing and demographic characteristics.

4. Dense retinal surface segmentation, where models simultaneously regress the column-
wise location of eleven retinal cell layers along each OCT A-scan as in (He et al., 2021).
Unlike the aforementioned image-level tasks, this task requires learning pixel-level structural
variations which are known to be affected by pathology, healthy ageing and differences in
patient sex.

For all tasks we tested scenarios where fewer labelled samples are available for training. To do
this we sample exponentially increasing amounts of labelled data for training, starting from just
20 training samples and increasing to 10,000 (for subset selection protocol refer to Appendix A.4).
Performance on classification tasks is measured in area under the receiver operator characteristic
curve (AUC) and regression and segmentation tasks in mean average error (MAE). We repeat all
downstream experiments using five different seeds and report performance in a low-data regime
finetuned on 100 labelled samples, or 1% of the data, against a full high-data regime using a
maximum of 10,000 labelled samples. Our entire workflow and results are repeated across both
retinal OCT datasets. In total our results summarise 4,620 finetuning runs evaluating 11 different
pretraining strategies.
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4. Results

4.1. Self-supervised pretraining on retinal OCT data is crucial for downstream performance

Models pretrained on retinal OCT images markedly outperformed models pretrained on natural
images such as ImageNet, as shown in Table 1 and Figure 4. Features extracted from RadImageNet,
containing 1.35 million radiological images, were more transferable than those from ImageNet, but
were still outperformed by all retinal OCT pretrained models. Full end-to-end finetuning (shown in
Table A.2) enables models with out-of-domain pretraining to reduce the disparity in performance
with models pretrained on OCT images. Furthermore, standard contrastive methods pretrained on
our datasets match the performance of RETFound despite using 13x fewer parameters and training
on as much as 15x fewer unlabelled images. For example, in age regression on the Southampton
dataset, standard BYOL underperforms compared to RETFound in the low-data regime of (7.21
vs. 6.96 MAE) but performs better in the high-data regime (5.91 vs. 6.18 MAE).
In linear evaluation, RETFound, which was trained as a Masked Autoencoder to reconstruct images
on a patch-level, outperformed all other methods on retinal layer segmentation. This reflects other
works suggesting that image-level representation learning tasks, such as contrastive learning, do
not generalise well to dense pixel-level tasks like segmentation (Wang et al., 2021; Li et al., 2022;
Hu et al., 2021; Chaitanya et al., 2020).

Table 1: We compare linear evaluation performance of different pretraining strategies across seven retinal downstream
tasks on the Southampton and Moorfields datasets. We find metadata-enhanced pretraining strategies outperformed
all other methods in all but one image-level task in both the low-data and high-data regime on both datasets. Best
performance is highlighted in bold, and second best is underlined.

Southampton Eye Unit

Pretraining variant
Early vs.

Healthy (AUC) ↑
Late vs. Early

(AUC) ↑
Visual acuity

(MAE Letters)↓
Dry vs. Wet
(AUC) ↑

Patient Age
(MAE years)↓

Patient Sex
(AUC) ↑

Segmentation
(MAE µm) ↓

# finetuning labels 100 8299 100 10000 100 10000 100 10000 100 10000 100 10000 100 10000

ImageNet SimCLR 0.551 0.587 0.568 0.537 18.4 18.5 0.570 0.620 7.50 7.51 0.516 0.518 98.3 86.4
RadImageNet pretrained 0.775 0.712 0.676 0.745 20.7 15.4 0.480 0.536 7.75 6.97 0.529 0.627 177 62.0

RETFound (foundation model) 0.900 0.941 0.732 0.792 13.9 12.3 0.798 0.885 6.96 6.18 0.619 0.737 59.8 40.1

SimCLR Standard 0.916 0.946 0.772 0.829 14.5 12.2 0.807 0.843 6.92 6.06 0.592 0.721 102 74.6
BYOL Standard 0.892 0.940 0.750 0.828 14.0 11.7 0.828 0.883 7.21 5.91 0.587 0.746 94.4 70.8

SimCLR
Ours (δT = ∞) 0.915 0.943 0.781 0.841 14.9 12.3 0.802 0.891 6.88 6.03 0.648 0.755 97.3 76.8
Ours (δT = 1.0) 0.930 0.950 0.770 0.832 14.4 11.9 0.827 0.893 6.74 5.97 0.65 0.743 98.3 74.2
Ours (δT = 0.5) 0.922 0.946 0.772 0.836 14.7 12.0 0.813 0.892 6.82 6.02 0.659 0.751 98.0 75.5

BYOL
Ours (δT = ∞) 0.923 0.947 0.761 0.831 14.0 11.8 0.842 0.901 6.70 5.97 0.629 0.748 96.7 84.2
Ours (δT = 1.0) 0.929 0.951 0.789 0.845 13.4 11.6 0.849 0.873 6.68 5.93 0.641 0.763 96.1 83.7
Ours (δT = 0.5) 0.923 0.946 0.790 0.847 13.0 11.5 0.836 0.849 6.76 5.92 0.618 0.746 96.3 81.3

Moorfields Eye Hospital
ImageNet SimCLR — — 0.520 0.460 17.7 17.8 — — 8.24 8.17 0.479 0.468 165 108

RadImageNet pretrained — — 0.549 0.524 16.7 15.5 — — 7.57 7.27 0.497 0.559 153 88.1
RETFound (foundation model) — — 0.698 0.804 13.9 12.4 — — 7.38 6.63 0.569 0.693 89.3 54.0

SimCLR Standard — — 0.733 0.836 14.9 12.0 — — 7.41 6.59 0.556 0.736 122 73.0
BYOL Standard — — 0.704 0.835 15.0 11.9 — — 7.34 6.61 0.582 0.754 121 73.3

SimCLR
Ours (δT = ∞) — — 0.722 0.866 14.8 12.4 — — 6.89 6.46 0.612 0.79 185 101
Ours (δT = 1.0) — — 0.748 0.864 14.7 12.1 — — 7.05 6.47 0.618 0.776 179 92.6
Ours (δT = 0.5) — — 0.740 0.871 14.8 12.1 — — 7.00 6.32 0.618 0.776 176 93.5

BYOL
Ours (δT = ∞) — — 0.748 0.865 14.6 12.3 — — 6.97 6.43 0.589 0.762 194 101
Ours (δT = 1.0) — — 0.765 0.868 14.5 12.1 — — 7.09 6.46 0.610 0.770 190 102
Ours (δT = 0.5) — — 0.768 0.876 14.3 12.2 — — 6.94 6.31 0.612 0.767 188 98.8
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Figure 4: Results of linear evaluation on downstream tasks using seven logarithmically spaced amounts of labelled
finetuning samples (with 95% confidence intervals). For clarity we omit the ImageNet and RadImageNet models,
which were consistently outperformed by the RETFound baseline (model colour key in bottom right). In all tasks
except segmentation, and visual acuity on Moorfields data, metadata-enhanced contrastive pretraining extending
BYOL and using δT ≤ 1.0 outperforms standard contrastive learning and RETFound, especially in scenarios with
fewer labelled data.

4.2. Metadata-enhanced pretraining outperforms all other forms of pretraining on image-level reti-
nal tasks

We find that metadata-enhanced BYOL, which does not use any negative pairs, matched or out-
performed metadata-enhanced SimCLR in all scenarios (except Sex classification in both datasets).
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This leads us to conclude that misleading negative pairs still degrade performance, despite the re-
moval of many using metadata. Furthermore, for BYOL we find that δT ≤ 1.0 typically performs
better than δT = ∞. For example, BYOL-ME(δT ≤ 1.0) surpasses BYOL-ME(δT = ∞) in the
both low and high-data regimes for Late vs. Early classification in both datasets. These results
support our hypothesis that defining positive pairs over short time intervals is beneficial for image-
level retinal analysis.
Overall, BYOL-ME δT ≤ 1.0 outperforms all pretrained baselines and standard contrastive learn-
ing approaches on every image-level task in the Southampton dataset, and all but one in the
Moorfields dataset. For example, to classify Late vs. Early AMD on the Moorfields dataset we
are able to surpass the performance of RETFound finetuned on all 10,000 labelled samples (0.80
AUC) using only 400 samples, or 2.5% (0.83 AUC). Similarly, we need only 100, or 1%, to recover
the same performance on the Southampton dataset (0.79 AUC). Given all 10,000 labelled samples,
our approach surpasses all baselines by achieving 0.85 AUC and 0.88 AUC in the Southampton
and Moorfields datasets, respectively.

5. Discussion

In this paper we demonstrated the benefits of incorporating widely available metadata into
self-supervised contrastive learning. Our approach uses metadata to address known issues of con-
trastive methods. To this end, we used metadata indicate the true set of inter-image contrastive
relationships in two longitudinal datasets of unlabelled OCT images. Our metadata-enhanced ap-
proach surpassed both standard contrastive learning and RETFound, the foundation model for
retinal OCT, in both low-data and high-data regimes. Our most performant variant, BYOL-
ME(δT ≤ 1.0), surpassed all pretrained baselines in all image-level tasks on the Southampton
dataset, and all but one on the Moorfields dataset. Our strategy also enabled models using 100x
fewer labelled samples to achieve the same performance as the most performant pretrained base-
lines in classifying Late vs. Early AMD. These results demonstrate that conditioning pretraining
with widely available, yet typically unused, metadata can address known weaknesses of established
contrastive frameworks in medical domains.
Our study represents the first to fully establish the wide ranging potential of metadata in self-
supervised pretraining in retinal OCT. Previous works in medical domains (Chen et al., 2021;
Azizi et al., 2021; Taleb et al., 2022; Zeng et al., 2021a; Vu et al., 2021) have either focussed on
evaluating multiple downstream tasks or on varying labelled subset sizes. Our work uses seven
tasks, two datasets and seven labelled subset sizes to provide a comprehensive picture of in-domain
self-supervised pretraining. Furthermore while related works focused on improving a single con-
trastive loss, we used both SimCLR and BYOL to ensure that pretraining with metadata represents
a general improvement to constrastive learning as a whole, rather than addressing the flaws of a
single framework. Overall, our experiments more closely resemble those used in studies on natural
images where more exhaustive evaluations are standard practise.
While our metadata-enhanced framework indicates the true contrastive relationship between two
images, there exist edge cases where it will make incorrect assignments. Without access to the
downstream task labels, misleading contrastive pairs containing images from different patients
that, by chance, exhibit the same severity and type of AMD will not become positive pairs using
our approach. Moreover, using a fixed temporal cutoff δT to determine positive pairs cannot en-
code variable rates of disease progression between eyes and individuals. A more informative set
of metadata might allow for accurate negative and positive pairs between fellow eyes. This may
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lead to further boost to performance in smaller datasets, but in ours these pairs constitute only
0.022% of the total. Moreover, for segmentation tasks that require encoding of local image features
contrastive frameworks using high-level context matching tasks had limited value for the pixel-level
segmentation task.
To address some of these issues future work could, for each contrastive pair of images, compare the
auto-generated metadata relationship reported by Equation 1 to a fully unsupervised similarity
score computed using standard contrastive pretraining. Then, by highlighting cases where both
BYOL and SimCLR disagree with Equation 1 we could begin to identify any systematic errors in
our formulation. Furthermore, future work can begin to investigate the potentially utility to prog-
nostic predictions of disease progression through embedding temporal dynamics into pretraining
Shen et al. (2024).

6. Conclusion

In this work we comprehensively demonstrated the benefits of incorporating medical metadata
into self-supervised contrastive learning. Our metadata-enhanced extension of existing contrastive
frameworks addresses known issues with contrastive methods while allowing researchers to flexibly
encode the temporal dynamics of disease progression into pretraining. Using this approach we
outperformed both standard contrastive pretraining and a foundation model for retinal images
across two datasets on six diverse image-level tasks in both a low-data and high-data regime. We
found benefits in downstream tasks relevant to the screening and management of AMD in retinal
OCT, ranging from classification of AMD stage and type to estimation of functional endpoints.
These promising findings motivate a shift in focus towards conditioning contrastive learning on
medical datasets with other modalities, which can enable accurate retinal image analysis using
few, gold-standard annotations.
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Appendix A. Supplementary material

Appendix A.1. Unfrozen finetuning results

To test finetuning performance with unfrozen pretrained weights we use the same evaluation
protocol described in Section 3.3.3 but lower the batch size to 384 and weight decay to 1.5 · 10−6.
We find unfreezing can allow inferior pretraining strategies to catch up to stronger models during
finetuning, and also improve performance on retinal layer segmentation (see Table A.2 and Figure
A.5). However, during full finetuning, while all other models effectively converged, RETFound faced
specific challenges in convergence likely due to its use of ViT-Large. Ultimately, for RETFound we
found better performance using the linear evaluation protocol. Overall, finetuning most in-domain
pretrained models with unfrozen weights performed comparably or slightly worse on image-level
tasks than with the linear evaluation protocol.

Appendix A.2. Contrastive pretraining details

In BYOL we choose the update coefficient τ = 0.9995 in accordance with the authors recom-
mendations for smaller batch sizes. We also found that for metadata-enhanced SimCLR setting
Q = 20 using the configuration described in (Chuang et al., 2020) increased stability during pre-
training.

Appendix A.3. Finetuning details

Pretraining speeds up the rate of convergence during finetuning. Accordingly, we found that
on some tasks most pretrained models achieve optimal performance very early during finetuning.
To address this validation epochs are initially run frequently at every four training steps. We then
scheduled this interval to increase to 2 epochs at 100 steps, 3 epochs at 500 steps, and 5 epochs at
1000 steps to improve efficiency by skipping redundant checks later in training.
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Table A.2: Downstream performance of unfrozen pretrained models. In most cases models performed comparably to
the frozen linear evaluation. Best performance is highlighted in bold, and second best is underlined.

Southampton Eye Unit
Pretraining
variant

Early vs. Healthy
(AUC) ↑

Late vs. Healthy
(AUC) ↑

Visual acuity
(MAE LogMAR)↓

Dry vs. Wet
(AUC) ↑

Patient Age
(MAE years)↓

Patient Sex
(AUC) ↑

Segmentation
(MAE µm) ↓

#finetuning labels 100 8299 100 10000 100 10000 100 10000 100 10000 100 10000 100 10000

No pretraining 0.835 0.917 0.682 0.808 16.3 12.4 0.694 0.825 8.17 9.55 0.594 0.701 31.4 17.2
ImageNet SimCLR 0.841 0.902 0.694 0.796 16.2 12.4 0.708 0.833 7.45 6.15 0.612 0.708 30.7 17.9

RadImageNet pretrained 0.879 0.944 0.662 0.804 18.1 12.1 0.709 0.871 7.40 6.10 0.562 0.723 69.3 16.4
RETFound (foundation model) 0.919 0.935 0.748 0.771 13.4 12.6 0.749 0.812 7.18 6.78 0.490 0.659 22.9 28.9

SimCLR Standard 0.903 0.941 0.771 0.849 13.6 11.7 0.778 0.860 7.35 6.07 0.608 0.742 32.3 16.0
BYOL Standard 0.903 0.936 0.754 0.835 13.4 11.5 0.763 0.869 7.64 6.08 0.626 0.730 29.2 16.3

SimCLR
Ours (δT = ∞) 0.905 0.942 0.779 0.836 14.0 11.6 0.791 0.859 7.39 5.98 0.634 0.763 36.8 15.8
Ours (δT = 1.0) 0.929 0.938 0.765 0.838 13.8 11.5 0.725 0.849 7.31 5.99 0.633 0.746 36.1 16.1
Ours (δT = 0.5) 0.914 0.941 0.772 0.827 14.0 11.6 0.784 0.874 7.45 6.08 0.638 0.761 36.0 16.1

BYOL
Ours (δT = ∞) 0.915 0.937 0.783 0.845 13.2 11.8 0.821 0.864 7.25 6.16 0.637 0.748 34.5 16.0
Ours (δT = 1.0) 0.924 0.937 0.779 0.835 13.1 11.6 0.817 0.841 7.24 6.16 0.639 0.733 34.1 15.9
Ours (δT = 0.5) 0.920 0.948 0.765 0.832 13.0 11.7 0.802 0.853 7.19 6.11 0.611 0.731 35.6 15.8

Moorfields Eye Hospital
No pretraining — — 0.639 0.809 16.2 12.8 — — 8.09 6.90 0.511 0.684 41.5 23.5

ImageNet SimCLR — — 0.592 0.815 15.9 12.7 — — 8.16 6.90 0.494 0.682 41.2 25.2
RadImageNet pretrained — — 0.607 0.819 15.3 12.3 — — 7.46 6.72 0.514 0.672 63.1 22.1

RETFound (foundation model) — — 0.632 0.706 14.3 13.0 — — 7.62 7.13 0.531 0.635 36.2 39.2

SimCLR Standard — — 0.725 0.835 13.7 11.7 — — 7.24 6.68 0.588 0.744 42.3 21.2
BYOL Standard — — 0.710 0.828 13.5 11.8 — — 7.24 6.40 0.573 0.749 40.5 21.5

SimCLR
Ours (δT = ∞) — — 0.711 0.849 14.0 11.7 — — 7.08 6.57 0.627 0.771 53.4 21.1
Ours (δT = 1.0) — — 0.722 0.854 14.0 11.9 — — 7.05 6.55 0.616 0.770 50.6 21.0
Ours (δT = 0.5) — — 0.739 0.858 13.7 11.6 — — 7.18 6.55 0.605 0.755 48.7 21.1

BYOL
Ours (δT = ∞) — — 0.719 0.849 13.9 11.9 — — 7.06 6.50 0.582 0.745 47.7 21.2
Ours (δT = 1.0) — — 0.734 0.851 13.9 11.9 — — 7.16 6.52 0.592 0.771 47.4 20.9
Ours (δT = 0.5) — — 0.741 0.856 13.8 11.9 — — 7.14 6.55 0.594 0.756 46.2 21.1

Appendix A.4. Sampling and training on labelled subsets

Labelled subsets for finetuning have exponentially increasing sizes. To choose these sizes we
round down the number of labelled samples to the nearest 10 labels if the amount is less than
100, and we otherwise round down to the nearest 100. The largest amount is not changed so as to
estimate performance with 100% of the available labels.
For classification tasks we stratify our labelled subsets by uniformly sampling a proportionate
amount of scans from each label class. This prevents the labelled subset from featuring only one
class or exhibiting a class balance unrepresentative of the original population. Finally to enable fair
comparison between different models we ensure that each is finetuned on the same set of randomly
drawn labelled subsets.

Appendix A.5. Robustness tests

Our metadata pairings defined in Equation 1 permit only positive relationships between images
from the same longitude. This introduces a theoretical degenerate solution in which images from
the same eye are mapped to the same latent feature point. In analogy to BYOL (Grill et al.,
2020) we find that this degenerate solution reliably does not occur (see Figure A.6). Moreover,
as expected relationships between embeddings of images of the same eye over time respect clinical
expectations. Namely, embeddings of images that were taken further apart in time, over which
more progression can occur, are typically more distant. While this trend holds in most cases, it
highlights two exceptions. Firstly, some images taken over a small window are in fact distant in
feature space. This reflects that AMD can progress very rapidly in a short space of time, such as
conversion to the late stage. Conversely, some patients progress very slowly and travel a relatively
short distance in feature space even over a long time period.
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Figure A.5: Performance of finetuning models with fully unfrozen weights on downstream tasks on both datasets.
Depicted is the performance (with 95% CIs) against varying sizes of the labelled subsets used for finetuning.

In a second robustness test, metadata-enhanced learning did not improve performance on predicting
the time of acquisition, a task unrelated to disease state (see Table A.3).
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Figure A.6: Distributions of times between longitudinal images of the same eye against distance measured in the
feature space on unseen test data. Our metadata-enhanced learning explicitly encourages that images of the same
eye should, on a small time interval, show similar disease-related features and be separated by a smaller distance in
the feature space. Emergence of this relationship can already be seen for standard contrastive learning.

Figure A.7: Performance of the IOWA tool on example OCT images from the Southampton dataset with no pathology,
hypertransmission, subretinal fluid and intraretinal fluid. In most cases it is robust to large deformations and presence
of fluid.

20



Figure A.8: Performance on downstream segmentation of retinal layers using no pretraining (fully supervised),
pretraining with BYOL and with BYOL-ME(δT = 0.5) finetuned using varying sizes of subsets of the labelled data.

Table A.3: MAE in hours on test set of models on predicting the time of day of image acquisition. Models were
finetuned on 10,000 images from the Southampton dataset.

Model SimCLR BYOL
SimCLR-ME
(δT=1.0)

BYOL-ME
(δT=1.0)

MAE 2.65 2.65 2.65 2.66
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Figure A.9: Longitudinal scanning series examples from the Southampton dataset. Most feature growing hypertrans-
mission (seen as signal below the retina) which is evidence for growing atrophy of the photoreceptors.
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